

Engineering Portfolio Team Fibonacci 14126 Springfield, OR

Our mission is to increase our knowledge in every aspect of robotics by observing and hands-on learning. To grow in our ability to adapt and learn in difficult situations, and to utilize our ever-growing knowledge and community to spread the benefits of FIRST

Table Of Contents

Award:	Pages:
Think	1, 7-11
Connect	1, 3-6, 7, 14
Innovate	8-11
Control	13-15
Motivate	2, 3, 4-6, 7, 13
Design	8-12

Full Team Plan

Our team is split into 3 subgroups: *engineering, code, and business*. At the beginning of the year each group sat down and **wrote a list of goals** they wanted to complete this season **along with the steps we needed to take to complete them**. After each competition we make even smaller goals we want to have completed before we compete again. **This keeps us focused and productive**.

Sub Team	Goals	Plan to reach our goal
Engineering	Move away from shelf parts and towards custom parts	Use less OTS parts on robot→ reach out to our sponsors about using waterjet→ use 3D printer, CNC machine, chop saw, table saw, and drill press to make parts
	2. CAD our robot and fully optimize it	Learn SOLIDWORKS→ CAD prototype robot→build optimized version of robot in CAD.
	1. Further our outreach into the technical community	Explore our connections → reach out to businesses by call and email → create a script for presentations
Business	2. Learn how to notebook efficiently as well as build a good portfolio	Talk to business captain alumni → explore formatting options → organize into sections → assign parts to team members → hold occasional meetings specifically for notebooking
	1. Re write and build our base code	Look at last year's code → write gyro code for driving → build drive functions for efficiency
Coding	2. Build a consistent and full point autonomous	Learn camera detection → look into roadrunner/odometry → find a way to navigate the stack quickly → build 4 different autos

Meet The Team

(12)	(17)		
Solomon (18)	Chase (17)	Dennis (17)	Tasha (15)
Years in FIRST - 6 Role: Lead Coder	Years in FIRST - 1 Role: Engineer	Years in FIRST - 7 Role: Co-Captain	Years in FIRST - 7 Role: Co-Captain
Micah (15)	Kennice (15)	Aspen (15)	Abby (14)
Years in FIRST - 4 Role: Engineer	Years in FIRST - 1 Role: Coder + Business	Years in FIRST - 1 Role: Business	Years in FIRST - 6 Role: Lead Business
Finn (14)	Khrom (13)	Max (13)	Riah (12)
Years in FIRST - 1	Years in FIRST - 1	Years in FIRST - 1	Years in FIRST - 1
Role: Coder	Role: Engineer	Role: Engineer	Role: Engineer

Sustainability Plan

Our team is never short of members. We gain a good amount of members through our annual workshops and outreach events. We also have 3 FLL teams in Springfield Robotics Club that feed into Fibonacci. Additionally, this year we held an open house at our meeting space to attract members.

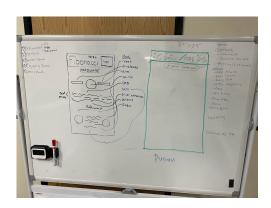
Business Team Plan

Lead: Abby

Support: Kennice, Aspen, Tasha

Individual goals

Abby			Kennice		
Goal	Accomplishment		Goal	Accomplishment	
Learn how to manage a team	Led the Business sub-group and managed full team meetings	Be m	nore professional	Presented to multiple different companies	


Tasha		Aspen		
Goal	Accomplishment		Goal	Accomplishment
Learn how to format and develop a good	Researched different FTC portfolios and manage the		Learn and grow in her ability to	Managed the notebook and wrote agendas for full
portfolio	building of the portfolio		manage	team meetings

Banners

We decided to **branch out and design banners for our judging and pits.** We made 2; one for robot and one for outreach. These help us communicate the hard work we've done in judging, outreach events, and presentations.

Test print banner

Planning banner layout

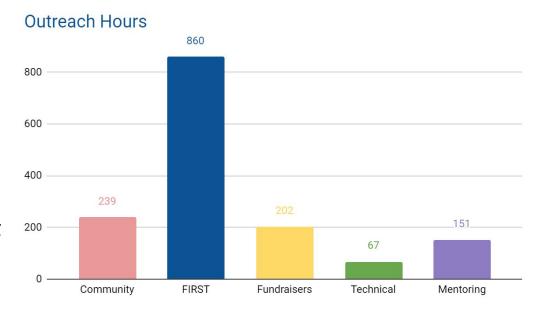
Mentors In Action

- **Aubrie** notebook, portfolio, management
- **Jenelle** fundraising, management
- Alisha graphic design, portfolio
- **Deanna** website
- Christy outreach, fundraising

Promote Video

Last year was the first time we explored the promote video. This year we decided to do a stop motion with 3D printed snails in a news report fashion. We learned a lot about editing, stop motion, audio recording, and video production.

3D printed snails for the promote video



Filming the promote video

Motivate/Connect

OUTREACH

This year we spent **1519 hours** reaching out as a team! We split our outreach into 4 different categories: *Community, Technical, FIRST*, and *Mentoring*. Our favorite outreach event was getting **invited by Dean Kamen** to present at the World's Athletic Championship!

Community Outreach (239 hours)

Booth at Lights of Liberty

Presentation at the World Athletics Championship!

Booth at the Lane County Fair

Lego robotics workshop

Booth at the EMS for STEAM night!

Table at the U of O for a girls STEAM camp

Booth at a Drifters baseball game

Volunteering at Food for Lane County

Technical Outreach (67 hours)

Touring Tumc

Touring Emerald Technology Group

Touring Pak Tech

Touring Olsson

Touring Stoddard

Touring Visual Robotics

Meeting with Garmin

FIRST Outreach (860 hours)

Co-hosting an FLL tournament

Co-hosting all of our league's events

Volunteering at multiple FTC events

Volunteering at multiple FLL tournaments

Mentoring (151 hours)

Fibonacci got the chance to mentor 7 different FTC teams! We also mentored 2 FLL teams and one of our members was the robot coach for another FLL team. This totalled to the **mentorship** of 9 different teams in the FIRST program!

Meeting with 2 FTC teams

Mentoring FLL teams

FUNDRAISING

Our goals this year required large amounts of money. We made a goal this season to increase our fundraising within the technical community. Emerald Technology Group helped us accomplish this. They hired us to bake 250 cinnamon rolls and deliver them to their clients for Christmas. Emerald gave us \$1000 and we made an additional \$2148 from donations! We received a \$1000 grant from FRC team 2521 SERT. We also fundraised by scooping ice cream at the Ems Baseball games, numerous donations, and reaching out to last year's sponsors. We raised a grand total of \$10,687!

Us receiving our grant from FRC team 2521

Our big cinnamon roll fundraiser

Fibonacci's Finances

Fundraisers
14.8%
\$1,587

Donations
30.9%
\$5,800
Sponsor
54.3°

MENTORS

In previous years our team has sorely lacked in mentor recruitment. We decided to fix that. We **enlisted mentors through personal connections, writing letters, and our technical outreach.** Our main **mentor focus was on CAD and outreach.** However, we also recruited mentors for code, notebooking/portfolio, and engineering.

Alisha Langan Fibonacci Coach

Danny Diaz

Sandra Langan Fibonacci Alumni

Jenelle Hahn Fibonacci Coach

Jarrod Schutle Garmin, 3D printing

Aubrie Stone Fibonacci Alumni

Jessie Britt OS Engineering, CAD

James Langan Fibonacci Coach

John Dillman
DWFrtizt, CAD

Mike Hahn UofO Bowerman Sports Science Clinic, Outreach

Nathan Stone Emerald Technology group, Business

Deanna Rivera Uplink Spyder, Website Development

Jan Hampton
Thurston High school
Outreach

Christy Stone Springfeild Robotics Club, Fundraising / Business

Jeromey Black
Olsson Industrial Electric,
Fabrication

Brayden Hilderband

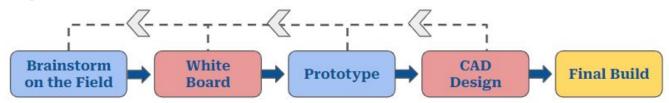
Engineering Team Plan

Lead: Dennis

Support: Riah, Chase, Khrom, Micah, Max

Individual Goals					
Dennis			Riah		
Goal	Accomplishment		Goal	Accomplishment	
learn how to design and produce custom parts to fully optimize our robot	Learned how to optimize a robot with CAD, used CAD to 3D print and waterjet custon parts		get a fundamental understanding of mechanical engineering	Solder and wire and design better battery management	
	Chase		Khrom		
Goal	Accomplishment		Goal	Accomplishment	
create relationships with people who share my interest in robots	joined drive team. got to interact with all the teams w compete with	e	understand the essentials of mechanical engineering	Learned how the robot works through maintenance & upkeep tasks	
1	Micah		Max		
Goal	Accomplishment		Goal	Accomplishment	
Expand on my knowledge of 3D printing as well as my engineering talent	better knowledge of 3d printing mechanics. Built the servo system for the dead wheel lift	e	learn the basics of mechanical engineering	took over the pre-flight checklist & robot maintenance	
• John - CAD parts	In Action o, design, source			14126	
• Jared - 3D printing		R	iah and Khrom cutting	Dennis learning	
Jessie - machining			encasement	how to CAD	
James - A little bit of everything		Bi	g Accomplishme		
• Jeremy - machining,		-	Increased custom partsEfficient prototyping		

- Battery system on jeremy (our cart)


Next Steps

- Develop drive base
- Continue to optimize the reach

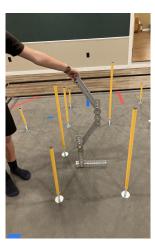
Design Process

fabrication

Jan - tools, encouragement

Design

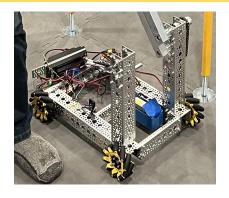
Drive Base


our drive base is Gobilda strafer chassis modified to be narrower and faster. For our encasement, we originally started with aluminum/PE composite for our side panels. However, the composite had too much memory, meaning that the aluminum could bend into the wheels and lock them up. Because of this, we decided to switch to polycarbonate, which is extremely strong and flexible, so it can absorb shock.

Design #1: scissor lift

Design #2: DR4B v.1

DR4B v.1 prototype


Design #3: DR4B v.2

CAD image of our Drive Base

Our original Aluminum/PE composite encasement

Our initial Drive base (without encasement)

Upgraded encasement to polycarbonate

The Journey of Our Arm

Design 1 - Scissor lift

• Problems: Too little torque, Too little speed

Design 2 - DR4B v.1

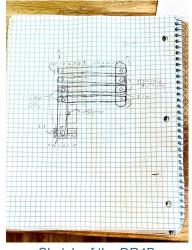
 Problems: extrudes too wide, head unit not centered, slop, lack of structural integrity

Design 3 - DR4B current version

- Solutions:
 - Narrowed extruders to center head unit
 - 3D printed and waterjetted custom parts to fully optimize design
 - Epoxied bearings to reduce slop

DR4B Arm

Our DR4B arm is fast, accurate, and pretty. The arm is fully custom built with waterjetted, chop saw and drill pressed parts. The arm utilizes a DR4B linkage that turns the rotational motion of our chain drive into linear motion. The chain drive lowers the center of gravity. The two four-bar linkages of the arm are connected by large gears, so when the first bar is swung by the chain, the second bar is swung the opposite direction, and both arms are lifted simultaneously. These grant us greatly increased RPM and Torque, with more speed than our drive wheels! The shape of our arm inspired us to name our robot "Luxo," because of its similarity to the Pixar lamp named Luxo.


Retracted extension

Go Go gadget extension

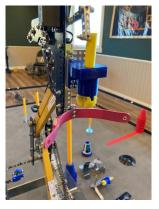
3D printed iterations of the extension

Sketch of the DR4B

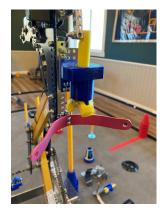
V.1 prototype

Current rear end assembly

Current DR4B

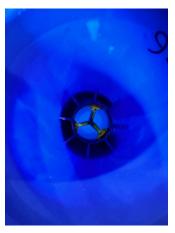

Horizontal Extension

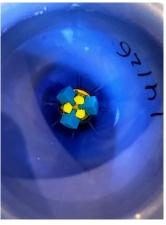
Our horizontal extension uses a 4-Bar linkage to **push our head unit 3** ¹/₄ **inches out of the frame of the robot.**


We needed a reach so that we didn't have to straddle the junctions to deposit a cone. We kept it short in order to keep the **mechanism safe from collisions** with game elements and other robots. It is **completely made out of water jetted 6061 aluminum alloy**, and is the most aesthetically pleasing part of the robot. To prototype it, we 3D printed about 10 different iterations before making the version we have now.

Grabber

Our grabber is by far the most intricate part of our robot, with multiple tiny moving parts. It is **3D printed out of a mix of PETG and PLA filament.** It is designed to **plunge into the top of a cone and then expand inside** to hold it. It uses a servo to push a plunger down, which is attached to some teeth by a hinge. This shoves the teeth out and into the walls of a cone. We chose this design because we can line up to grab passively, which makes for **fast and accurate grabbing and releasing.**




Grabber closed

Grabber open

Inside of a Cone



Grabber closed

Grabber open

Iterations of our grabber (left to right - oldest to newest)

Iterations of our head unit

The Journey of Our Grabber

Design 1 - Clamping Grabber

 Problems: inefficient, slow line up, inaccurate drops

Design 2 - Interior intake MK1

Problems: mount was too weak, grabbed 2
 cones at a time off of the stack

Design 3 - Interior intake mk2

• Problems: wide tooth profile, too big

Design 4 - Interior intake mk4

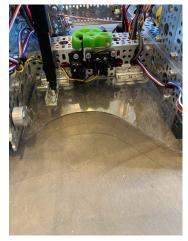
Problems: PLA is too weak

Design 5 - Interior intake mk5

- Problems: PETG teeth are too brittle
- Solutions: switched material to PETG

Design 6 - Interior intake mk6

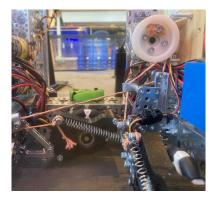
- Problems: TPU teeth are too grippy, teeth stretched and couldn't retract
- Solutions: Tested TPU, Teeth absorbed shock and held together

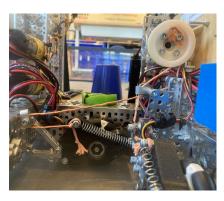

Design 7- Interior intake mk7 (current version)

 Solutions: Switched to PLA teeth, moved hole pattern to fit new head unit

Design/Innovate

Plow


Our plow is a recent addition we added to line up cones passively inside of the robot. We use a linear servo to raise and lower it. We do this to keep the plow low enough to catch the bottom rim of the cone and raise it back up to prevent hitting the ground junctions and breaking it.


Plow raised to clear ground junctions

Plow lowered to line up a cone

Odometry pods raised to avoid damage during TeleOp

Odometry pods lowered for autonomous

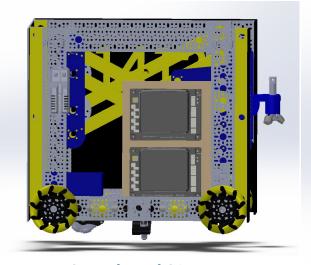
Odometry Pod Lift

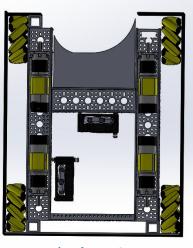
We encountered a problem with our deadwheels getting caught against the ground junctions in teleOp, so we created a system to pull the wheels off the ground. it utilizes a servo connected to a series of pulleys to pull up the dead wheels in one smooth motion. With the wheels completely removed from the ground, we can better travel the field without worrying about damage and obstructions.

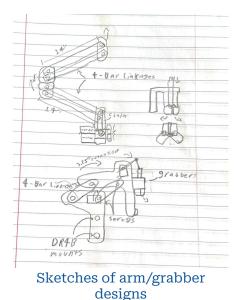
Aesthetics

This year we experimented with making vinyl wraps for our robot to make it fun and to protect from ESD. We did this by making a design In publisher than printing It on strong sticker paper. Our wraps are removable so we can change them between tournaments. In addition, we spray painted multiple parts of our robot to make it easy on the eyes and also to protect the aluminum.

Abby cutting out a wrap



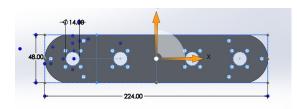

Wrap #3 on our robot


CAD

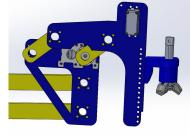
Goals:

One of our engineering goals this year was to learn CAD not just to make custom parts, but to aid in designing mechanisms on the robot.

Drive base CAD


Control Panel CAD

Learning solidworks:


Besides a little experience in tinkerCAD and Inventor, **none of us had ever really used CAD**. we solved this by buying a udemy course and practicing over the off season. **We talked to mentors on both making designs in CAD and fabricating things with our CAD designs.**

Application:

- Designing custom parts
- Designing complex mechanisms
- Visualising how components fit in the robot
- Testing mechanisms before building them

DR4B Rear end plate design

Reach CAD design

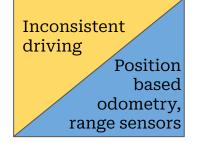
CAD Drawing of full robot

Code Team Plan

Leads: Solomon, Tasha Support: Finn, Kennice

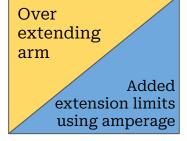
Individual Goals

Solomon		Kennice		
Goal	Accomplishment	Goal	Accomplishment	
Improve our autonomous navigation	Implemented range sensors, odometry, and rewrote gyro	Try something outside of my comfort zone	Learned and implemented Vuforia and AI for detecting our signal sleeve	
Tasha		Finn		
Goal	Accomplishment	Goal	Accomplishment	
Improve drive controls in TeleOp	Created 9 presets for picking up and placing cones. Used TeleOp automation to pick up cones	Learn the basics of Java and coding in FTC	Used drive functions to program autonomous	


Code team working on autonomous

Mentors In Action

- Sandra gyro, yoink mode, Vuforia troubleshooting
- **James** logic, base code, troubleshooting
- Aubrie control page
- Alisha hypewoman, feeding the emo coders


Big Problems → **Big Solutions**

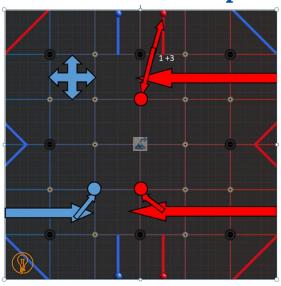
Code Team encountered many problems during the season. From connection issues to our robot's inertia, **we had to think outside of the box and research A LOT** to come up with solutions. Here are some problems we encountered and the solutions we came up with!

Battery sensitive driving

Used velocity for drive speed

Cone pick-up takes too long Created TeleOp Automation (Yoink Mode)

Control


<u>Autonomous</u> <u>Objectives:</u>

- Deliver 5 cones onto a high junction in a 1 + 4 fashion
- Park using our custom sleeve

Sensors Used:

- 2 odometry encoders
- 4 drive motor encoders
- 1 range sensor
- gyro on the IMU
- 2 distance sensors
- 1 IR color sensor
- vuforia on the camera
- 1 limit switch

Autonomous Map

We programmed 4 different autos for the purposes of strategy and in case of mechanical failure

Driver Control Enhancements

- **Yoink mode** uses *TeleOp automation* to accurately pick up a cone with the single press of a button. Yoink mode uses 2 distance sensors and 1 IR color sensor
- Arm reset uses 1 distance sensor and a limit switch to reset the arm encoder values during TeleOp
- Moving a plow up and down automatically to square cones and prevent damage.
- **9 Preset buttons** programmed to go to a specific height using encoder values. 4 for delivering onto junctions and 5 for picking up from the stack.

Pole Detection

We are using a range sensor on the back of our robot to **detect the poles on the field and drive based on the values returned.** This allows us to **accurately drop cones in autonomous regardless of field discrepancies.**

Key Algorithms:

Our autonomous program uses 5 drive functions. The functions allow us to individualize inputs such as speed, distance, yaw angle, etc. The function will store the user input data into variables and use it within the function to be executed. All of our drive functions have an input that will employ logic depending on which side of the field we are running on. Functions:

- GyroDriveENC: to drive forward and backwards accurately according to set path
- GyroDriveStack: to move forward until distance sensor sense the cones
- GyroStrafeENC: to move side to side accurately
- GyroSpin: to spin accurately according to set direction
- liftENC: to move the arm up and down safely

Driver Control Diagram

(Left = arm controls, right = drive controls)

Detection/Machine learning

For our detection this year we decided to try a *machine learning tool*. To use it we take a video of our *custom sleeve* and import it into the **FIRST machine learning website**. We go frame by frame telling the robot what each of our vision targets look like and giving them a name. Once it finishes we **import the file into our code telling the code** what to call the targets and we are done! Now the camera can correctly identify each of our targets.

